Master's in Data Science

  • Top Schools
    • 23 Great Schools with Master’s Programs in Data Science
    • 22 Top Schools with Master’s in Information Systems Degrees
    • 25 Top Schools with Master’s in Business Analytics Programs
  • Online Programs
    • Online Data Science Degree Programs
    • Online Bachelor’s in Computer Science
    • Online Masters in Business Analytics Programs
    • Online Masters in Information Systems Programs
    • Online Masters in Computer Engineering
    • Online Masters in Computer Science
    • Online Masters in Cybersecurity
    • Online Certificate Programs in Analytics
  • By State
    • Alabama
    • Arizona
    • Arkansas
    • California
    • Colorado
    • Connecticut
    • Delaware
    • Florida
    • Georgia
    • Hawaii
    • Idaho
    • Illinois
    • Indiana
    • Iowa
    • Kansas
    • Kentucky
    • Louisiana
    • Maine
    • Maryland
    • Massachusetts
    • Michigan
    • Minnesota
    • Mississippi
    • Missouri
    • Montana
    • Nebraska
    • Nevada
    • New Hampshire
    • New Jersey
    • New Mexico
    • New York
    • North Carolina
    • North Dakota
    • Ohio
    • Oklahoma
    • Oregon
    • Pennsylvania
    • Rhode Island
    • South Carolina
    • South Dakota
    • Tennessee
    • Texas
    • Utah
    • Vermont
    • Virginia
    • Washington
    • Washington, D.C.
    • West Virginia
    • Wisconsin
  • Related Degrees
    • Data Science Bachelor Degrees
    • Data Science Certificate Programs for 2021
    • Master’s in Accounting Analytics
    • Master’s in Applied Statistics
    • Master’s in Business Analytics
    • Master’s in Business Analytics Online
    • Master’s in Business Intelligence
    • Master’s in Geospatial Science & GIS
    • Master’s in Health Informatics
    • Master’s in Information Systems
    • Master’s in Library Science
    • Master’s in Public Policy Data Analytics
    • MBA in Analytics/Data Science
    • PhD in Data Science Programs
    • Programs Outside the US
  • Careers
    • Business Analyst
    • Business Analyst Salary Guide
    • Computer Engineer
    • Computer Scientist
    • Data Analyst
    • Data Analyst Salary Guide
    • Data Architect
    • Data Engineer
    • Data Scientist
    • Data Scientist Salary Guide
    • Marketing Analyst
    • Quantitative Analyst
    • Financial Analyst
    • Information Security Analyst
    • Statistician
    • Digital Marketer
  • Online Courses
    • Your Guide for Online Data Science Courses in 2021
    • Online Data Analytics Courses
    • Machine Learning Courses
    • Blockchain Courses
    • Online Digital Marketing Courses
    • FinTech Courses
    • Financial Analysis Courses
    • Cybersecurity Courses
    • Business Analytics Courses
    • Artificial Intelligence Courses
    • UX/UI Courses
  • Bootcamps
    • Data Science Bootcamps
    • Data Analytics Bootcamps
    • Coding Bootcamps
    • Are Coding Bootcamps Worth it?
    • Cybersecurity Bootcamps
    • UX/UI Bootcamps
    • FinTech Bootcamps
    • Digital Marketing Bootcamps
  • Learning
    • What is Data Analytics?
    • What is Business Analytics?
    • What Is Cyber Security?
    • What is Computer Engineering?
    • What is Computer Science?
    • Best Programming Language to Learn
    • Is Computer Science a Good Major?
    • What Can You Do With a Computer Science Degree?
    • What Is a Neural Network?
    • What is an Information System?
    • Learn Data Science Online
    • Benefits of Business Intelligence Software
    • Computer Science vs. Computer Engineering
    • Cyber Security vs Computer Science
    • Data Analyst vs Data Scientist
    • Data Analytics vs. Business Analytics
    • Data Science vs. Machine Learning
  • Resources
  • About 2U

What is a Data Scientist

Data scientists are big data wranglers, gathering and analyzing large sets of structured and unstructured data. A data scientist’s role combines computer science, statistics, and mathematics. They analyze, process, and model data then interpret the results to create actionable plans for companies and other organizations.

Data scientists are analytical experts who utilize their skills in both technology and social science to find trends and manage data. They use industry knowledge, contextual understanding, skepticism of existing assumptions – to uncover solutions to business challenges.

A data scientist’s work typically involves making sense of messy, unstructured data, from sources such as smart devices, social media feeds, and emails that don’t neatly fit into a database.

Sponsored Schools with Master’s in Data Science Programs

University Project-Based GRE Requirement Coursework Typical Time to Complete
Syracuse University Project-based curriculum GRE Waiver Machine Learning, Data Analytics, Natural Language Processing As few as 18 months
Southern Methodist University Some project-based coursework GRE Waiver Machine Learning, Statistical Foundations for Data Science, Cloud Computing As few as 20 months
University of Denver Project-based curriculum GRE Waiver Machine Learning, Python Software Development, Advanced Probability and Statistics for Data Science As few as 18 months
University of California, Berkeley Project-based coursework GRE Waiver Machine Learning, Statistics for Data Science, Deep Learning in the Cloud and at the Edge As few as 12 months

Sponsored

Technical skills are not the only thing that matters, however. Data scientists often exist in business settings and are charged with communicating complex ideas and making data-driven organizational decisions. As a result, it is highly important for them to be effective communicators, leaders and team members as well as high-level analytical thinkers.

Experienced data scientists and data managers are tasked with developing a company’s best practices, from cleaning to processing and storing data. They work cross functionally with other teams throughout their organization, such as marketing, customer success, and operations. They are highly sought after in today’s data and tech heavy economy, and their salaries and job growth clearly reflect that.

Steps to Become a Data Scientist

Here are six common steps to consider if you’re interested in pursuing a career in data science:

  1. Pursue an undergraduate degree in data science or a closely related field
  2. Learn required skills to become a data scientist
  3. Consider a specialization
  4. Get your first entry-level data scientist job
  5. Review additional data scientist certifications and post-graduate learning
  6. Earn a master’s degree in data science

How to Become a Data Scientist in 2020

1. Pursue an undergraduate degree in data science or a closely related field

You will need at least a bachelor’s degree in data science or computer-related field to get your foot in the door as an entry level data scientist, although most data science careers will require a master’s degree. Degrees also add structure, internships, networking and recognized academic qualifications for your résumé. However, if you’ve received a bachelor’s degree in a different field, you may need to focus on developing skills needed for the job through online short courses or bootcamps.

2. Learn the required skills to become a data scientist

  • Programming
  • Machine Learning techniques
  • Data Visualization and Reporting
  • Risk Analysis
  • Statistical analysis and Math
  • Effective Communication
  • Software Engineering Skills
  • Data Mining, Cleaning and Munging
  • Research
  • Big Data Platforms
  • Cloud Tools
  • Data warehousing and structures

3. Consider a specialization

Data scientists may specialize in a particular industry or develop strong skills in areas such as artificial intelligence, machine learning, research, or database management. Specialization is a good way to increase your earning potential and do work that is meaningful to you. 

4. Get your first entry level job as a data scientist

Once you’ve acquired the right skills and/or specialization, you should be ready for your first data science role! It may be useful to create an online portfolio to display a few projects and showcase your accomplishments to potential employers. You also may want to consider a company where there’s room for growth since your first data science job may not have the title data scientist, but could be more of an analytical role. You’ll quickly learn how to work on a team and best practices that will prepare you for more senior positions.

5. Review additional data scientist certifications and post-graduate learning

Here are a few certifications that focus on useful skills:

Certified Analytics Professional (CAP)

CAP was created by the Institute for Operations Research and the Management Sciences (INFORMS) and is targeted towards data scientists. During the certification exam, candidates must demonstrate their expertise of the end-to-end analytics process. This includes the framing of business and analytics problems, data and methodology, model building, deployment and life cycle management.

SAS Certified Predictive Modeler using SAS Enterprise Miner 14

This certification is designed for SAS Enterprise Miner users who perform predictive analytics. Candidates must have a deep, practical understanding of the functionalities for predictive modeling available in SAS Enterprise Miner 14.

6. Earn a master’s degree in data science

Academic qualifications may be more important than you imagine. When it comes to most data science jobs, is a master’s required? It depends on the job and some working data scientists have a bachelor’s or have graduated from a data science bootcamp. According to Burtch Works data from 2019, over 90% of data scientists hold a graduate degree.

Data Scientist Responsibilities

On any given day, a data scientist’s responsibilities may include:

  • Solving business problems through undirected research and framing open-ended industry questions
  • Extract huge volumes of structured and unstructured data. They query structured data from relational databases using programming languages such as SQL. They gather unstructured data through web scraping, APIs, and surveys.
  • Employ sophisticated analytical methods, machine learning and statistical methods to prepare data for use in predictive and prescriptive modeling
  • Thoroughly clean data to discard irrelevant information and prepare the data for preprocessing and modeling
  • Perform exploratory data analysis (EDA) to determine how to handle missing data and to look for trends and/or opportunities
  • Discovering new algorithms to solve problems and build programs to automate repetitive work
  • Communicate predictions and findings to management and IT departments through effective data visualizations and reports
  • Recommend cost-effective changes to existing procedures and strategies

Every company will have a different take on data science job tasks. Some treat their data scientists as data analysts or combine their duties with data engineers; others need top-level analytics experts skilled in intense machine learning and data visualizations.

As data scientists achieve new levels of experience or change jobs, their responsibilities invariably change. For example, a person working alone in a mid-size company may spend a good portion of the day in data cleaning and munging. A high-level employee in a business that offers data-based services may be asked to structure big data projects or create new products.

Characteristics of a Successful Data Scientist Professional

Data scientists don’t need to just understand programming languages, management of databases and how to transpose data into visualizations – they should be naturally curious about their surrounding world, but through an analytical lens. Possessing personality traits that resemble quality assurance departments, data scientists may be meticulous as they review large amounts of data and seek out patterns and answers. They are also creative in making new algorithms to crawl data or devising organized database warehouses.

Generally, professionals in the data science field must know how to communicate in several different modes, i.e to their team, stakeholders and clients. There may be a lot of dead ends, wrong turns, or bumpy roads, but data scientists should possess drive and grit to stay afloat with patience in their research.

“Successful data scientists have a strong technical background, but the best data scientists also have great intuition about data. Are the features meaningful, and do they reflect what you think they should mean? Given the way your data is distributed, which model should you be using? What does it mean if a value is missing, and what should you do with it? The best data scientists are also great at communicating, both to other data scientists and non-technical people. In order to be effective at Airbnb, our analyses have to be both technically rigorous and presented in a clear and actionable way to other members of the company.”

–Lisa Qian, Data Scientist at Airbnb

Required Skills for a Data Scientist

Programming: Python, SQL, Scala, Java, R, MATLAB

Machine Learning: Natural Language Processing, Classification, Clustering,
Ensemble methods, Deep Learning

Data Visualization: Tableau, SAS, D3.js, Python, Java, R libraries

Big data platforms: MongoDB, Oracle, Microsoft Azure, Cloudera

Data Science Job Outlook

According to the Bureau of Labor and Statistics (BLS), employment growth of computer information and research scientists, which include data scientists, from 2019 to 2029 is 15%. Demand for experienced data scientists is high, but you have to start somewhere. Some data scientists get their foot in the door working as entry-level data analysts, extracting structured data from MySQL databases or CRM systems, developing basic visualizations in Tableau or analyzing A/B test results. If you’d like to push beyond your analytical role – think about what you could do with a career in data science:

  • Data/Big Data Engineer
  • Data/Big Data Architect

Companies of every size and industry – from Google, LinkedIn and Amazon to the humble retail store – are looking for experts to help them wrestle big data into submission. In certain companies, “new look” data scientists may find themselves responsible for financial planning, ROI assessment, budgets and a host of other duties related to the management of an organization.

Data Scientist Salary

A data scientist’s salary depends on years of experience, skillset, education, and location. According to The Burtchworks Study, employers place greater value on data scientists with specialized skills, such as Natural Language Processing or Artificial Intelligence. The BLS claims skilled computer research and information scientists, which include data scientists, enjoy excellent job prospects because of high demand. Salary data below comes from 2019 data from the Bureau of Labor Statistics.

Data Scientist
Average Data Scientist Salary: $122,840 per year
Lowest 10%: $69,990
Highest 10%: $189,780

Senior Data Scientist
Median Sr. Data Scientist Salary: $171,755
Total Pay Range: $147,000 – $200,000

Interested in a different career? Check out our other bootcamp guides below:

  • Data Science Bootcamp Guide
  • Data Analytics Bootcamp Guide
  • Coding Bootcamp Guide

Data Scientist Career FAQ:

How do I become a data scientist?

The first step to becoming a data scientist is typically earning a bachelor’s degree in data science or a related field, but there are other ways to learn data science skills such as a bootcamp or through the military. You may also consider pursuing a specialization or certification or earning a master’s degree in data science before getting your first entry-level data scientist job.

What skills are needed to be a data scientist?

Data scientists use a variety of skills depending on the industry they work in and their job responsibilities. Most data scientists are familiar with programming languages such as R and Python, as well as statistical analysis, data visualization, machine learning techniques, data cleaning, research and data warehouses and structures.

How long does it take to be a data scientist?

The time it takes to become a data scientist depends on your career goals and the amount of money and time you prefer to spend on your education. There are four-year bachelor’s degrees in data science available, as well as three-month bootcamps. If you’ve already earned a bachelor’s degree or completed a bootcamp, you may want to consider earning a master’s degree, which can take as little as one year to complete. As shown in the aforementioned Burtch Works study, most data scientists do hold an advanced degree.

Last updated: June 2020

Share on Facebook Share
Share on TwitterTweet
Share on LinkedIn Share

SPONSORED DATA SCIENCE PROGRAMS

UC Berkeley - Master of Information and Data Science
Sponsored Program
Syracuse University - Master of Science in Applied Data Science
Sponsored Program

SPONSORED ANALYTICS PROGRAMS

American University - Master of Science in Analytics
Sponsored Program
Syracuse University - Master of Science in Business Analytics
Sponsored Program

Online Programs

  • Online Master’s in Data Science Programs
  • Online Master’s in Business Analytics
  • Master’s in Information Systems Online
  • Online Master’s in Computer Science
  • Online Master’s in Computer Engineering
  • Online Master’s in Cybersecurity
  • Graduate Certificates in Data Science Online

Career Profiles

  • Business Analyst
  • Data Analyst
  • Data Architect
  • Data Engineer
  • Data Scientist
  • Marketing Analyst
  • Information Security
  • Quantitative Analyst
  • Statistician

Bootcamps

  • Data Science Bootcamps
  • Data Analytics Bootcamps
  • Coding Bootcamps
  • Cybersecurity Bootcamps
  • UX/UI Bootcamps
  • Fintech Bootcamps
  • Digital Marketing Bootcamps

Online Courses

  • Online Data Science Courses
  • Online Data Analytics Courses
  • Online Machine Learning Courses
  • Online Blockchain Courses
  • Online Digital Marketing Courses
  • Online Financial Analysis Courses
  • Online Cybersecurity Courses
  • Online Business Analytics Courses
  • Online Artificial Intelligence Courses
  • Online UX/UI Courses

Industry Uses

  • Biotechnology
  • Energy
  • Finance
  • Gaming and Hospitality
  • Government
  • Health Care
  • Insurance
  • Internet
  • Manufacturing
  • Pharmaceuticals
  • Retail
  • Telecommunications
  • Travel and Transportation
  • Utilities
  • Food

Data Science Technologies

  • R
  • Python
  • SQL
  • Hadoop
  • Tableau

MastersInDataScience.org is owned and operated by 2U, Inc.
© 2U, Inc. 2021

About 2U | Privacy Policy | Terms of Use | Resources